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Abstract

Intelligent human inputs are required both in the training and operation of AI
systems, and within the governance of blockchain systems and decentralized
autonomous organizations (DAOs). This paper presents a formal definition of
Human Intelligence Primitives (HIPs), and describes the design and implementation
of an Ethereum protocol for their on-chain collection, modeling, and integration in
machine learning workflows.

1 Introduction and Related Work

Modern Artificial Intelligence tends to focus on centralization, autonomy and competition with
humans (1). However, the idea of augmenting human intelligence (2) and "man-computer symbiosis"
(3) was prevalent in the early days of AI and cybernetics.

Human-in-the-loop (HITL) machine learning (4) is a promising development in this regard. Intelligent
human inputs are often included in the machine learning workflow before training, in the form of
data annotation. The HITL approach extends the scope of this integration to include human-machine
interactions during training, e.g. through expert supervision (5), and post-training, e.g. in safety
audits and fine-tuning models (6).

Software applications for crowdsourcing human intelligence tasks face challenges pertaining to the
unfair compensation of labor (7), fraud (8), censorship (9), and the difficulty of vetting credentials
(10). The latter is typified by protocols geared towards centralized crowd-labor platforms, such as
Turkit (11). For example, human input is taken from an indistinct mass of crowd workers on Amazon’s
Mechanical Turk platform, without the ability to require a certain level of expertise or credentials from
respondents. Turkit (11) introduced the useful concept of scripting human intelligence tasks within
traditional web applications, and was designed with issues related to high-cost and high-latency steps
involving humans in mind. This required engineering a crash-rerun approach to avoid re-executing
expensive steps.

Decentralized software deployed on public, permissionless blockchains offers natural opportunities
to tackle the aforementioned challenges. Any write instruction in a smart contract is an atomic
transaction that is immutably stored on the blockchain, and transparently accessible to any client
application. Moreover, in addition to trustless, uncensorable payment processing, blockchain software
can offer participants ownership in the system they partake in. Lastly, the emergence of standards for
identity management, such as the non-fungible token standard, allow for sophisticated access control
and have propelled the emergence of domain-expert decentralized autonomous organizations (DAOs).

DAOs are sometimes imagined as being governed by autonomous algorithms, with humans at the
margins. However, there is an increasing push towards a future of collective intelligence that promotes
harmony between humans and algorithms by optimizing for the autonomy of individuals (12). We
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believe that protocols that facilitate crowdsourcing of human intelligence and preferences are a key
component of this. This has applications in collection and annotation of training data, and AI safety.

In the following, we describe a protocol for Ethereum Virtual Machine (EVM)-compatible blockchains
that allow for the on-chain modeling of human intelligence tasks and their integration in machine
learning workflows.

2 Human Intelligence Primitives

A Human Intelligence Primitive (HIP) is a procedure for the collection and representation of pref-
erences structures on a finite set of n potential alternatives (i.e. comparable objects or actions)
A = {a0, . . . , an−1}. Preferences can be of one of the four following types, based on (13):

• A choice (P1), that is a subset A′ ⊆ A of potential alternatives, typically a singleton set,
containing the preferred alternative(s).

• A ranking (P2), that is a total preorder on A, ordering alternatives by decreasing preference,
with possible ex-aequo. A particular case of ranking is preferential voting (18), in which
this preference structure is a total order on A.

• A sorting (P3), that is the assignment of each alternative in A into pre-defined classes
C = {c0, . . . , ck−1}, ordered by decreasing preference. A particular case of sorting is score
voting (19) on a discrete scale.

• A classification (P4), that is the assignment of each alternative in A into pre-defined,
unordered classes C = {c0, . . . , ck−1}.

A HIP can thus be abstractly characterized by a triplet (t, n, k), where t ∈ {P1, P2, P3, P4} is
the type of preferences sought, n ∈ {2, 3, . . . ,+∞} the number of alternatives considered, and
m ∈ {1, 2, . . . ,+∞} the number of classes (equal to 1 for a choice or ranking primitive).

3 Smart Contract Architecture

We propose a smart contract implementing HIPs to incentivize and coordinate collective intelligence
by humans within DAOs. HIPs can be initiated by Externally-Owned Account (EOA) on Ethereum,
or contracts, through a CALL or DELEGATECALL operation. Conversely, the smart contract can
communicate synchronous events to off-chain clients (e.g. the submission of a response to a HIP),
and its output can be read asynchronously by these programs.

We consider two categories of users of the smart contract; proposers and respondents. A HIP is
recorded in a HIP object, the creation of which is initiated by a proposer address, through a function
submitHIP(). In this function, a proposer submits a triplet (t, n, k), and pays a fee that depends
on the type of primitive t. The type t is encoded by an enumerable types {CHOICE, RANKING,
SORTING, CLASSIFICATION}, while the number of alternatives n and the number of classes k are
stored in unsigned integers.

Additionally, the proposer specifies a duration, encoded as an unsigned integer number of seconds, for
taking responses. This duration is relative to the creation date of the HIP, recorded as the timestamp
of the valid block enacting its creation on the blockchain. Lastly, the HIP object records the number
of responses (individual preference structures compatible with the HIP type) recorded so far, in an
unsigned integer variable numResponses.

An individual response to a HIP is submitted by a respondent address, through a function
submitResponse(), specifying the address of the proposer, and the index of the HIP being re-
sponded to, among their proposed HIPs. Respondents’ access is gated by a non-fungible token (NFT),
vetting their credentials, and giving them read access to the corresponding off-chain semantic data,
and write access to record a response to a HIP in the contract. Moreover, before recording a response,
we verify that the respondent has not already voted, and that the submitted response is compatible
with the HIP type t. An individual response that passes these checks is recorded in a Response
structure, containing the address of the respondent and an array of unsigned integers, representing the
content of the response.
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Given the strengths of the blockchain (trustless access control and payment processing), and its
weaknesses (inability to store secrets and high cost of computation), we have made the following key
architecture choices:

• Since data are transparently stored on the blockchain, HIP objects are recorded in the abstract
form of a triplet (t, n, k), and linked with semantic data (i.e. descriptions for alternatives
and classes) that are stored off-chain.

• In order to incentivize responses, and discourage their concentration in a few HIPs, the
reward of each respondent is the fee paid by the proposer divided by the number of responses,
by the end of a HIP’s duration.

• Once recorded in the contract, responses can be eventually accessed by off-chain clients for
computationally complex processing and aggregation.

The proposed architecture is summarized in the process diagram in Figure 1.

Figure 1: Architecture of the proposed protocol

4 Main Data Structures

The implementation of the protocol is subject to four indexing requirements:

• Reading/Writing HIPs requires mapping proposers with the HIPs they have created. This is
implemented as a mapping(address => HIP[]), named HIPs, whose key is a proposer
address, and value is an array of HIPs submitted by this address.

• Reading/Writing Responses requires mapping HIPs with the responses they have received.
This is implemented as a double mapping, mapping(address => mapping(uint =>
Response[])), named responses, indexed by a proposer address and an integer index for
a HIP, and whose value is an array of responses submitted for it.

• Ensuring single responses requires mapping respondents and HIPs, with a boolean indicating
whether the former has submitted a response to the latter. This is implemented as a triple
mapping, mapping(address => mapping(address => mapping (uint =>bool))), named
responded, indexed by a respondent address, a proposer address and an integer index for a
HIP, and whose value is a boolean indicating the existence of a response.

3



• Payment processing requires mapping respondents with the proposers and indices of the
HIPs they have responded to. This is implemented as a mapping, mapping(address =>
ResponseRef[]), named responseRefs, indexed by a respondent address, and whose
value is an array of objects of type responseRef, containing the address of a proposer and
the index of a HIP.

These four mappings are illustrated in Figure 2.

Figure 2: Main data structures

4.1 Response Verification

Before a response, submitted in the form of an array R of unsigned integers, is recorded in the
contract, we must verify that it is valid for a given HIP, defined by a triplet (t, n, k).

• If t indicates a choice primitive, the validity requirements are that length(R) == 1 (i.e. we
only allow singleton choices2) and R[0] < n (i.e. the submitted choice corresponds to the
index of a possible alternative).

• If t indicates a ranking primitive, the validity requirements are that length(R) == n and
R contains unique digits between 0 and n − 1. This latter requirement is verified by a
function uniqueDigits() in O(n), which uses a local boolean array variable of size n.
Depending on the preferred storage-computation trade-offs, an alternative would be to verify
the uniqueness of the digits of R in O(n2), without the use of a local array. This is the most
computationally-intensive potential operation in the proposed protocol.

• If t indicates a sorting or classification primitive, the validity requirements are that
length(R) == n and R only contains digits between 0 and k − 1.

4.2 Payment Processing

Compensating respondents to a HIP proportionally to its total number of respondents poses challenges
for payment processing. It notably not allow for a real-time incrementation of a respondent’s balance.

2This requirement could be changed to an inequality to allow for larger choice subsets.
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This is due to the fact that any computation on the EVM must be initiated by an EOA, and it does
not allow for automated code execution. The solution we propose is to compute this balance once a
respondent requests a payment, using the requestPayment() function, so that they can bear the gas
cost of this computation.

5 Example Applications

A wide range of tasks requiring human intelligence can be expressed as HIPs, for example within
the training and operation of AI systems and the governance of blockchain systems and DAOs.
Surveys can be modeled as an instance of P1 (14), the collection of training data for machine-learned
ranking (MLR) as P2 (15), independent AI safety audits as P3 (6), or data annotation as P4 (16). In
these examples, HIPs are used with a descriptive intent and a collection of individual preferences
is their intended output. Moreover, when combined with a systematic aggregation procedure for
individual preferences, HIPs can serve as primitives in processes such as plurality voting or approval
voting as instances of P1 (17), preferential voting as P2 (18), score voting as P3 (19), or rule-based
classification as P4 (20).

Following is an example, in pseudo-JavaScript, for a data annotation use case. The prefix
"contract." indicates a call to a function of the contract by an EOA or a web client, e.g. us-
ing the web3.js library (21).

• Proposer calls a classification HIP with await contract.methods.submitHIP(CLASSIFICATION,
n, 2, duration).send({from:accounts[0], value:fee});

• After a delay corresponding to the value of the argument duration, proposer collects re-
sponses with response=await contract.methods.getResponse(proposer,index,
i).call();

• Proposer aggregates responses off-chain using e.g. the majority rule.

6 Conclusion and Perspectives

This paper described the design and implementation of an Ethereum protocol to to incentivize and
coordinate collective intelligence by humans on-chain. Experiments using the proposed protocol will
be conducted in the Algovera community, a DAO for data scientists, in order to identify new use
cases and optimize gas usage for typical real-world applications.

The detailed source code of the proposed implementation can be found in the Appendix of this paper.

References
[1] Siddarth, D. et al. (2021) How AI Fails Us. Technology & Democracy Discussion Paper, Harvard

Kennedy School, Carr Center for Human Rights Policy, Cambridge, Massachusetts.

[2] Ross, A. W. (1956) An Introduction to Cybernetics. London: Chapman & Hall Ltd.

[3] Licklider, J. C. R. (1960) Man-Computer Symbiosis, IRE Transactions on Human Factors in
Electronics, 1, pp. 4–11.

[4] Xin, D. et al. (2018) Accelerating Human-in-the-loop Machine Learning: Challenges and
Opportunities, DEEM’18: Proceedings of the Second Workshop on Data Management for End-To-
End Machine Learning, June 2018, pp. 1-4.

[5] Wu, X. et al. (2022) A survey of human-in-the-loop for machine learning, Future Generation
Computer Systems, 135, pp. 364-381.

[6] Falco, G. et al. (2021) Governing AI safety through independent audits, Nature Machine Intelli-
gence, 3, pp. 566–571.

[7] Hagendorff, T. (2021) Blind spots in AI ethics, AI and Ethics, Commentary, pp 1-17.

[8] Hartvigsen, D. (2008) The Manipulation of Voting Systems, Journal of Business Ethics, 80 (1),
pp. 13–21.

5



[9] Ebel, C. et al. (2021) Towards intellectual freedom in an AI Ethics Global Community. AI and
Ethics, 1, pp 131-138.

[10] Halderman, J. A., Teague, V. (2015) The New South Wales iVote System: Security Failures
and Verification Flaws in a Live Online Election, Proceedings of the International Conference on
E-Voting and Identity, Lecture Notes in Computer Science, 9269, pp. 35-53.

[11] Little, G., Chilton, L. B., Goldman, M., Miller, R. C. (2009) TurKit: tools for iterative tasks
on mechanical Turk. In Proceedings of the ACM SIGKDD Workshop on Human Computation
(HCOMP ’09), Paul Bennett, Raman Chandrasekar, Max Chickering, Panos Ipeirotis, Edith Law,
Anton Mityagin, Foster Provost, and Luis von Ahn (Eds.). ACM, New York, NY, USA, pp. 29-30

[12] Nabben, K (2021) Imagining Human-Machine Futures: Blockchain-based ’Decentralized
Autonomous Organizations’, working paper, SSRN: https://ssrn.com/abstract=3953623.

[13] Roy, B. (1996) Multicriteria Methodology for Decision Aiding, Kluwer Academic Publishers,
Dordrecht (1996).

[14] Rubenfeld, G. D. (2004) Surveys: An Introduction, Respiratory Care October, 49 (10), pp.
1181-1185.

[15] Rahangdale, A., Raut, S. (2019) Machine Learning Methods for Ranking, International Journal
of Software Engineering and Knowledge Engineering, 29 (06), pp. 729-761.

[16] Paullada, A. et al. (2021) Data and its (dis)contents: A survey of dataset development and use
in machine learning research, Patterns, 2 (11), 100336.

[17] Laslier, JF. (2012). And the Loser Is. . . Plurality Voting. In: Felsenthal, D., Machover, M. (eds)
Electoral Systems. Studies in Choice and Welfare. Springer, Berlin, Heidelberg.

[18] Arrow, K. J. (1951) Alternative Approaches to the Theory of Choice in Risk-Taking Situations,
Econometrica, 19 (4), pp. 404-437.

[19] Dery, L., Tassa, T., Yanai, A. (2021) Fear not, vote truthfully: Secure Multiparty Computation
of score based rules. Expert Systems with Applications, 168, 114434.

[20] Li, X. L., Liu, B. (2014) Rule-based classification. In: Aggarwal CC (ed.) Data classification:
algorithms and applications. CRC Press, Boca Raton, pp. 121–156.

[21] Lee, W.-M. (2019) Using the web3.js APIs, In: Beginning Ethereum Smart Contracts Program-
ming, pp. 169–198, Apress, Berkeley, CA.

A Appendix: Source Code of the Proposed Protocol

// SPDX -License -Identifier: CC BY 4.0
pragma solidity ^0.8.12;
/**
* @title Human -augemented Intelligence contract
* @author Nassim Dehouche
*/
import "@openzeppelin/contracts/interfaces/IERC721.sol";
contract HaAI {
address owner;
address tokenContract ;
// HIP types
enum types{ CHOICE , RANKING , SORTING , CLASSIFICATION}
uint numProposers;
address [] proposers;
uint[] fees;

constructor (){
owner = msg.sender;
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}

/**
@param _tokenContract is the address of the ERC -721 contract to vet
voters. We assume one address , one NFT , one vote.
Use 0xF5b2B5b042B253323cB96121ABad487C95d287ea on Kovan
*/

function initialize (address _tokenContract , uint[] calldata _fees )
public{

require(msg.sender == owner);
tokenContract = _tokenContract;
fees=_fees;

}

// The HIP structure
struct HIP{

types HIPType;
uint numAlternatives;
uint numClasses;
uint creationDate;
uint duration;
uint numResponses;
}

// Mapping proposers with an array of their proposed HIPs
mapping(address => HIP []) public HIPs;

// The Response struct for the content of the response.
struct Response{

address respondent;
uint[] response;
}

// The Response reference struct for payment.
struct ResponseRef{

address proposer;
uint index;
}

// Responses. The first key is the proposer address
mapping(address => mapping(uint => Response [])) internal responses;

// The Response boolean. The first key is the respondent address
mapping(address => mapping(address => mapping (uint =>bool))) public

responded;

// The Response reference for payment. Mapping respondent with the
HIPs they responded to.

mapping(address => ResponseRef []) public responseRefs;

modifier onlyIfPaidEnough(types _HIPType) {
require(msg.value==fees[uint(_HIPType)], "User did not pay the

right fee for this HIP type.");
_;

}

modifier onlyIfHoldsNFT(address _voter) {
require(IERC721(tokenContract).balanceOf(_voter) > 0, "User does

not hold the right NFT.");
_;

}

modifier onlyIfHasNotResponded(address _proposer , uint _id) {
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require(responded[msg.sender ][ _proposer ][_id ]==false , "User has
already responded.");

_;
}

modifier onlyIfStillOpen(address _proposer , uint _id) {
require(block.timestamp <=HIPs[_proposer ][_id]. creationDate+HIPs[

_proposer ][_id].duration , "This HIP is no longer open for
responses.");

_;
}

function submitHIP
(

types _HIPType ,
uint _numAlternatives ,
uint _numClasses ,
uint _duration)

public
payable
onlyIfPaidEnough(_HIPType)

returns(uint _id)
{
bool condition;
if (_numAlternatives >=2){

condition=true;
if (_HIPType == types.SORTING || _HIPType ==types.CLASSIFICATION){
condition=_numClasses >=2;

}
}

if(! condition) { revert(’Trivial or invalid HIP’); }

_id= HIPs[msg.sender ]. length;
if (_id ==0){
numProposers ++;
proposers.push(msg.sender);
}
HIPs[msg.sender ].push();
HIPs[msg.sender ][_id]. HIPType = _HIPType;
HIPs[msg.sender ][_id]. numAlternatives = _numAlternatives;
HIPs[msg.sender ][_id]. numClasses = _numClasses;
HIPs[msg.sender ][_id]. creationDate = block.timestamp;
HIPs[msg.sender ][_id]. duration = _duration;
return _id;
}

function rightDigits (uint[] calldata _response , uint _number)
internal
pure
returns(bool _right)
{
uint i;
_right=true;
while (i<_response.length){
if (_response[i]>=_number){

return false;
}
unchecked{i++;}

}
return _right;
}
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function uniqueDigits (uint[] calldata _response , uint _number)
internal
pure

returns(bool _unique)
{
bool[] memory visited;
uint i;
_unique=true;
while (i<_response.length){
if (_response[i]>=_number || visited[_response[i]]== true){

return false;
}
else{

visited[_response[i]]= true;
}
unchecked{i++;}

}
return _unique;
}

function submitResponse
(

address _proposer ,
uint _id ,
uint[] calldata _response)

public
onlyIfHoldsNFT(msg.sender)
onlyIfHasNotResponded(_proposer , _id)
onlyIfStillOpen(_proposer , _id)
returns(uint _number)
{
bool condition;

if (HIPs[_proposer ][_id]. HIPType == types.CHOICE){
condition=_response.length ==1 && _response [0]<HIPs[_proposer ][_id].

numAlternatives;
}
else if (HIPs[_proposer ][_id]. HIPType ==types.RANKING){
condition=_response.length ==HIPs[_proposer ][_id]. numAlternatives

&& uniqueDigits(_response , _response.length);

}
else if (HIPs[_proposer ][_id]. HIPType ==types.SORTING || HIPs[

_proposer ][_id]. HIPType == types.CLASSIFICATION){
condition=_response.length ==HIPs[_proposer ][_id]. numAlternatives

&& rightDigits(_response , HIPs[_proposer ][_id]. numClasses);

}

if(! condition) { revert(’Invalid response ’); }

_number=responses[_proposer ][_id]. length +1;
HIPs[_proposer ][_id]. numResponses=_number;
responses[_proposer ][_id].push();
responses[_proposer ][_id][_number -1]. respondent=msg.sender;
for(uint i = 0; i < _response.length; ) {

responses[_proposer ][_id][_number -1]. response.push(_response[i]);
unchecked{i++;}
}
ResponseRef memory r;

r.proposer = _proposer;
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r.index = _id;

responseRefs[msg.sender ].push(r);
responded[msg.sender ][ _proposer ][_id]=true;
return _number;
}

// Respondents payment function
function requestPayment () public
{
uint _balance;
uint _id;
address _proposer;
for (uint i=0;i<responseRefs[msg.sender ]. length ;){
_proposer=responseRefs[msg.sender ][i]. proposer;
_id=responseRefs[msg.sender ][i].index;
if (_proposer != address (0) && block.timestamp >HIPs[_proposer ][_id].

creationDate+HIPs[_proposer ][_id]. duration)
{
responseRefs[msg.sender ][i]. proposer=address (0);
_balance +=fees[uint8(HIPs[_proposer ][_id]. HIPType)]/HIPs[_proposer

][_id]. numResponses;
unchecked{i++;}
}
}

(bool sent , ) = msg.sender.call{value: _balance }("");
require(sent , "Failed to send Ether");

}

function getNumProposers () public view returns(uint _numProposers){
return numProposers;

}

function getFee(uint i) public view returns(uint _fee){
return fees[i];

}
function getProposer(uint i) public view returns(address _proposer){

return proposers[i];
}

function getHIPCount(address _proposer) public view returns(uint
_count){
return HIPs[_proposer ]. length;

}

function getResponse(address _proposer , uint _indexHIP , uint
_indexResponse) public view returns(uint[] memory _response){
return responses[_proposer ][ _indexHIP ][ _indexResponse ]. response;

}

function getBalance () public view returns(uint _balance){

uint _id;
address _proposer;
for (uint i=0;i<responseRefs[msg.sender ]. length ;){
_proposer=responseRefs[msg.sender ][i]. proposer;
_id=responseRefs[msg.sender ][i].index;
if (_proposer != address (0) && block.timestamp >HIPs[_proposer ][_id].

creationDate+HIPs[_proposer ][_id]. duration)
{
_balance +=fees[uint8(HIPs[_proposer ][_id]. HIPType)]/HIPs[_proposer

][_id]. numResponses;
unchecked{i++;}
}
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}
return _balance;

}

}
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